High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345
نویسندگان
چکیده
BACKGROUND Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. OBJECTIVE Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. DESIGN Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. RESULTS Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. CONCLUSIONS We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot accommodate the lipid disturbances and altered membrane integrity arising from changes in phospholipid/lipid metabolism. These preliminary findings may have clinical implications for individuals consuming high-dose folic acid supplements, particularly those who are MTHFR deficient.
منابع مشابه
High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring
Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folat...
متن کاملProtective Effect of Folic Acid against Apoptosis Induced by Ischemia/Reperfusion Injury in Rat Liver
The anti-apoptotic gene bcl-2 is located in mitochondria, but it is uncertain whether its expression affects hepatocyte survival in ischemia/reperfusion (I/R) injury. This experiment was designed to evaluate the role of folic acid in expression of bcl-2 in I/R in rat liver. Eighteen Wister rats were divided into sham-operated controlgroup (C) (n=6), I/R group (...
متن کاملMethylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue.
Methylenetetrahydrofolate reductase (MTHFR) is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM). In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT), which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose...
متن کاملThalassemia Intermedia; Folic Acid and Vitamin B12 Supplementation. What We Know and What is Needed?
This study presented a mini review on folic acid deficiency and recommendations for its supplementation in thalassemia intermedia (TI). TI is a clinical condition which lies between thalassemia major and thalassemia minor. Although TI patients may not need regular blood transfusion, precise diagnosis and management are critical for the prevention of clinical complications and quality of life im...
متن کامل[The influence of thyroid hormones on homocysteine and atherosclerotic vascular disease].
Several reports have appeared in the literature proving that hypothyroidism is associated with increased risk for cardiovascular disease, especially coronary heart disease. This increased risk for premature atherosclerosis is supported by autopsy and epidemiological studies in patients with thyroid hormone deficiency. Hypothyroid patients have increased diastolic blood pressure (as a result of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 101 شماره
صفحات -
تاریخ انتشار 2015